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Abstract. For classification of time series, the simple 1-nearest neighbor (1NN) 

classifier in combination with an elastic distance measure such as Dynamic 

Time Warping (DTW) distance is considered superior in terms of classification 

accuracy to many other more elaborate methods, including k-nearest neighbor 

(kNN) with neighborhood size k > 1. In this paper we revisit this apparently pe-

culiar relationship and investigate the differences between 1NN and kNN classi-

fiers in the context of time-series data and constrained DTW distance. By vary-

ing neighborhood size k, constraint width r, and evaluating 1NN and kNN with 

and without distance-based weighting in different schemes of cross-validation, 

we show that the first nearest neighbor indeed has special significance in la-

beled time-series data, but also that weighting can drastically improve the accu-

racy of kNN. This improvement is manifested by better accuracy of weighted 

kNN than 1NN for small values of k (3–4), better accuracy of weighted kNN 

than unweighted kNN in general, and reduced need to use large values of con-

straint r with weighted kNN. 

Keywords: Time series, Dynamic Time Warping, global constraints, classifica-
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1 Introduction 

A time series represents a series of numerical data points in successive order, usually 

with uniform intervals between them. This form of data can appear in almost every 

aspect of human activity including: representing social, economic and natural phe-

nomena, medical observations, results of scientific and engineering experiments, etc. 

Time-series mining is the subfield of artificial intelligence where different data min-

ing methods are applied on time-series data in order to understand the phenomenon 

which generated those time series. These methods include classification, clustering, 

anomaly detection, prediction, and indexing. 

The choice of appropriate distance/similarity measure is a crucial aspect of time-

series mining since all mentioned methods explicitly or implicitly use distance 
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measures. These measures should be carefully defined in order to reflect the essential 

similarities between time series which are commonly based on shapes and trends. 

Research in this field yielded several distance measures – from Euclidean distance [1] 

as the most simple and intuitive to the more sophisticated distance measures such as 

Dynamic Time Warping (DTW) [2], Longest Common Subsequence (LCS) [3], Edit 

Distance with Real Penalty (ERP) [4] and Edit Distance on Real sequence (EDR) [5]. 

Unfortunately, the quality of distance measures is usually hard to evaluate since the 

notion of similarity is a very subjective and data-dependent issue. The most common 

approach to the assessment of distance measures in the literature [6,7,8] is through 

evaluation of classification accuracies of distance-based classifiers. The quality of the 

nearest-neighbor based techniques strongly depends on the quality of the used dis-

tance measures, which makes the NN classifier very suitable for distance-measure 

assessment. Furthermore, the simple 1NN classifier is selected in several works [7, 9], 

as one of the most accurate classifiers for time-series data, demonstrating comparable 

and even superior performance than many more complex classification approaches, 

including the k-nearest neighbor classifier with k > 1. 

The main goal or this paper is to provide a more detailed investigation of differ-

ences between 1NN and kNN classifiers in the context of time-series data and DTW 

distance. We will show that the accuracy of kNN can be improved and made superior 

to 1NN when the importance of the first neighbor is taken into account. The rest of 

the paper is organized as follows: next section gives some basic facts and an overview 

of the recent work in this area. Section 3 presents the detailed results of our experi-

ments which are conducted on 46 datasets available from [10]. The final section con-

tains conclusions drawn from the experiments, as well as possibilities for future work. 

2 Background and Related Work 

The advantages of Euclidean distance (easily implementable, fast to compute and  

represents a distance metric) have made it, over time, probably one of the most com-

monly used similarity measure for time series [11,12,13,14]. However, due to the 

linear aligning of the points of the time series it is sensitive to distortions and shifting 

along the time axis [15, 16]. To address this shortcoming, many different elastic simi-

larity measures were proposed. Among them, some of the most widely used and stud-

ied are Dynamic Time Warping (DTW) and Longest Common Subsequence (LCS), 

and their extensions, Edit Distance with Real Penalty (ERP) and Edit Distance on 

Real sequence (EDR). 

Implementations of these elastic similarity measures are based on dynamic pro-

gramming: in order to determine the similarity between two time series we need to   

compare each point of one time series with each point of the other one. This can lead 

to pathological non-linear aligning of the points (where a relatively small part of one 

time series maps onto a large section of the other time series) and slow down the 

computations. One way to avoid these adverse effects is to constrain the warping path 

using the Sakoe-Chiba band [17]. 



It is reported that the elastic measures can have better classification accuracy than 

Euclidean distance and that constraining the warping window can further improve the 

accuracy of these measures [7, 9]. In [18] and [19] we have shown that when the con-

straint parameter is tight enough (less than 15%-10% of the length of the time series), 

constrained versions of the elastic measures (DTW, LCS, ERP and EDR) become 

qualitatively different from their unconstrained counterparts (in the sense of produc-

ing significantly different 1-nearest neighbor graphs). In [9] and [15], based on exper-

iments using a limited number of datasets it is reported that narrow constraints (less 

than 10% of the length of time series) are necessary for accurate DTW and that a  

warping window which is too large may actually deteriorate classification accuracy. 

All mentioned experiments for distance-measure assessment were conducted with 

1NN classifier as it was shown that it gives among the best results (compared to many 

not only distance-based classifiers) with time-series data [7, 9]. This fact strongly 

indicates that the first neighbor has particularly important meaning in the time-series 

datasets. In [20], the reasons and origins of this special behavior of the first neighbor 

are investigated, and related with the observed diversity of class labels in k-

neighborhoods. In this paper, we will compare the accuracies of 1NN and kNN classi-

fiers when using the DTW time-series distance measure in order to understand the 

special meaning of the first neighbor. Furthermore, we will attempt to improve the 

accuracy of  kNN by favoring the first (few) neighbors. 

3 Experimental Results 

Through extensive experiments in this section we will investigate the suggestions and 

findings regarding the influence of the Sakoe-Chiba band on the Dynamic Time 

Warping similarity measure, 1NN and kNN classifiers discussed above. We will ob-

serve the following widths of the warping window: 100% (the unconstrained similari-

ty measure), 90%, 80%, 70%, 60%, 50%, 45%, 40%, 35%, 30%, and all values from 

25% to 0% in steps of 1%. These values were chosen based on reports that the 

measures with larger constraints behave similarly to the unconstrained ones, while the 

smaller constraints show more apparent discrepancies [7, 9, 15, 18, 19]. 

We are going to report the minimal value of the warping window that maximizes 

the classification accuracy of the k-nearest neighbor classifier for a large number of 

datasets. This classifier is chosen taking into account that among many classification 

methods (decision trees, neural networks, Bayesian networks, support vector ma-

chines, etc.) simple nearest-neighbor methods often give the best results when work-

ing with time series [7, 9]. In addition to that, the quality of distance/similarity meas-

ure directly influences the accuracy of the NN classifier, which makes it appropriate 

for distance/similarity measure assessment. 

To obtain a better insight into the impact of constraining the warping window our 

experiments encompass five different evaluation methods of classification accuracy: 

leave-one-out (LOO), stratified 9-fold cross-validation (SCV1x9), 5 times repeated 

stratified 2-fold cross-validation (SCV5x2), 10 times repeated stratified 10-fold cross 

validation (SCV10x10) and 10 times repeated stratified holdout method (SHO10x) 



using two-thirds of available time series for training and one third for testing. The 

datasets are randomly shuffled in each run. Furthermore, we observe the unweighted 

and the weighted kNN classifier with the values of parameter k in range from 1 to 30. 

Weights are calculated by the formula 1/d(q,c)
2
 where d(q,c) denotes the distance 

between the time series q and c [21]. 

The experiments were conducted on 46 datasets from [10], which includes the ma-

jority of all publicly available, labeled time-series datasets in the world. In addition to 

that, this collection of datasets is most commonly used for validation of different 

time-series mining concepts. The length of time series varies from 24 to 1882 depend-

ing of the dataset. The number of time series per dataset varies from 56 to 9236 and 

the number of classes varies from 2 to 50. 

The unweighted kNN classifier. In Fig. 1 we can clearly notice that the relation-

ship between the parameter k and the average smallest error rate is almost linear – the 

growth of parameter k leads to the decline of classification accuracy. The highest 

average classification accuracy (88.772%) was achieved with the 1NN classifier and 

the LOO evaluation method and the lowest one (74.536%) with the 30NN classifier 

and the SCV5x2 evaluation method (Table 1). 

In case of the unweighted kNN classifier the average width of the smallest warping 

window which gives the lowest error rate for DTW varies in the range from 3.783 to 

10.087. We can see that the increase of the parameter k implies the growth of the 

average warping window widths (Fig. 2): we need wider and wider windows to get 

the best accuracy. The smallest average warping window (3.783) was obtained using 

the LOO evaluation method and the 1NN classifier and the largest one (10.087) with 

the SHO10x evaluation method and the 24NN classifier (Table 2). 

 

Fig. 1. Average lowest error rates for DTW with unweighted kNN 



Table 1. Minimum and maximum of the average lowest error rates for DTW with unweighted 

kNN 

 
MIN MAX MAX-MIN 

 
error k error k 

 LOO 11.228% 1 19.317% 30 8.089 

SCV1x9 11.494% 1 19.636% 30 8.142 

SCV5x2 13.628% 1 25.464% 30 11.836 

SCV10x10 11.410% 1 19.701% 30 8.291 

SHO10x 12.471% 1 22.223% 30 9.752 

 

 

Fig. 2. Average smallest warping window widths for DTW with unweighted kNN 

Table 2. Minimum and maximum of the average smallest warping window widths for DTW 

with unweighted kNN 

 
MIN MAX MAX-MIN 

 
r k r k 

 LOO 3.783 1 7.652 30 3.870 

SCV1x9 4.065 1 8.587 30 4.522 

SCV5x2 4.913 1 9.935 24 5.022 

SCV10x10 4.261 1 8.565 21 4.304 

SHO10x 4.000 1 10.087 24 6.087 

 



The weighted kNN classifier. Looking at the chart in Fig. 3 we can see that in the 

case of DTW the use of weights changes the influence of the parameter k on the accu-

racy of classification: instead of 1NN the smallest average error rates were achieved 

with 3NN (or 4NN in the case of SCV5x2 and SHO10x). After a brief decline and 

reaching the minimum value, the error rates begin to grow again, similarly as in the 

case of the unweighted kNN classifier but visibly slower. The attained maximum 

values of the classification errors are more than 1.5 times less than without weights 

(Table 3). The highest average classification accuracy was achieved by LOO and the 

lowest one by SCV5x2. 

Fig. 4 shows that the introduction of weights into the kNN classifier noticeably al-

leviates the growth of the average warping window widths. In this case the largest 

average warping window (6.848) was achieved by the combination of the 8NN classi-

fier and the SCV5x2 evaluation method (Table 4). The smallest average warping win-

dow (3.783) was obtained using the 1NN classifier and the LOO evaluation method. 

The differences between the minimum and maximum average r values are about two 

times smaller than in the case of the unweighted kNN classifier. 

 

Fig. 3. Average lowest error rates for DTW with weighted kNN 

 

 

 

 

 



Table 3. Minimum and maximum of the average lowest error rates for DTW with weighted 

kNN 

 
MIN MAX MAX-MIN 

 
error k error k 

 LOO 10.923% 3 12.256% 30 1.333 

SCV1x9 11.072% 3 12.426% 30 1.354 

SCV5x2 13.468% 4 14.970% 30 1.502 

SCV10x10 11.134% 3 12.412% 30 1.278 

SHO10x 12.177% 4 13.527% 30 1.350 

 

 

Fig. 4. Average smallest warping window widths for DTW with weighted kNN 

Table 4. Minimum and maximum of the average smallest warping window widths for DTW 

with weighted kNN 

 
MIN MAX MAX-MIN 

 
r k r k 

 LOO 3.783 1 6.087 19 2.304 

SCV1x9 3.935 6 6.370 23 2.435 

SCV5x2 4.913 1 6.848 8 1.935 

SCV10x10 4.109 6 6.043 7 1.935 

SHO10x 4.000 1 6.304 25 2.304 



4 Conclusions and Future Work 

The results of experiments clearly confirmed the special importance of the first 

neighbor in time-series data. As seen in Fig. 1, the error rate of the unweighted kNN 

classifier almost linearly grows as the number of neighbors k grows. The kNN classi-

fier actually gives the best results for the value k = 1 when consider k neighbors with-

out a weighting scheme. On the other hand, when the weighting scheme is introduced 

(Fig. 3) the situation is changed to some extent. The best results are obtained for the 

value k = 3. Furthermore, the weighting scheme which favors the first neighbor signif-

icantly improved the accuracy for all values ok k. 

When observing the value of constraint (Fig. 2 and 4) the introduction of the 

weighting scheme has an important impact. For unweighted kNN, the value of the 

constraint grows as k grows. On the other hand, with the weighting scheme the value 

of the constrains remains approximately the same for all values of k. In addition, the 

difference between minimum and maximum values of constraints is about two times 

smaller with the weighting scheme. 

All these observations indicate that favoring the first neighbor with a weighting 

scheme improves the quality and stability of kNN. The first neighbor has a special 

meaning in time-series data and taking this fact into consideration can significantly 

improve the quality of kNN for all values of k, by making it even more accurate than 

1NN for some small values of k. 

In future work, it would be interesting to investigate the influence of weighting on 

other popular time-series distance measures like Euclidian distance, LCS, EDR, ERP, 

etc. In addition, the behavior of other weighting schemes [21, 22, 23, 24] we believe 

also warrants further investigation. 
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